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Finite-amplitude disturbances in plane Poiseuille flow are studied by a method 
involving Fourier expansion with numerical solution of the resulting partial 
differential equations in the coefficient functions. A number of solutions are 
developed which extend to relatively long times so that asymptotic stability 
or instability can be established with a degree of confidence. The amplitude for 
neutral stability is established for a fixed wavenumber for two values of the 
Reynolds number. Details of the neutral velocity fluctuation are presented. These 
and earlier results are expressed in terms of the asymptotio amplitude and com- 
pared with results obtained by prior workers. The results indicate that the 
expansion methods used by prior workers may be valid only for amplitudes 
considerably smaller than 0.0 1. 

1. Introduction 
George & Hellums (1972) made a study of the response of plane Poiseuille 

flow to a particular hite-amplitude disturbance. A number of numerical solu- 
tions were developed for a fixed wavenumber for various values of the initial 
amplitude and Reynolds number. I n  each case, after observation of the behaviour 
of the solution, a decision was made as to whether it was stable (amplitude 
diminishing with time) or unstable. The amplitude ordinarily was not a simple 
monotone function of time. In  some cases, a solution must be observed over 
a relatively long period of time before the asymptotic behaviour can be estab- 
lished with a degree of confidence. In  fact, short-term observation of a solution 
can lead one to make serious errors on the stability question. The amplitude for 
neutral stability (the asymptotic amplitude in a case of neutral stability) is 
often much smaller than the initial amplitude. Furthermore, since the neutral 
amplitude does not occur until many cycles of the disturbance have taken place, 
the neutral disturbance presumably bears little influence of the shape of initial 
disturbance and may be considered to approximate the large-time asymptote. 

In  this communication we present results of a, new series of solutions by 
George & Hellums’ method. These solutions were developed for the primary 
purpose of examining this asymptote or neutral disturbance in detail. 
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To accomplish this purpose, we have carried out a number of solutions to very 
long times so that we can be relatively confident that we are observing an approxi- 
mation to the asymptotic behaviour. I n  addition, we have reinterpreted the 
work of George & Hellums and developed a summary of the work using the 
asymptotic amplitude as a parameter of neutral stability. In  the original work, 
the initial amplitude was used as a parameter. As indicated below, thisre- 
interpretation has important implications, especially in comparisons with results 
of other workers. 

Details of the method are given by George (1970) and by George & Hellums 
(1972). Hence, we confine our remarks here to a very brief outline. 

The dimensionless disturbance stream function satisfies 

where R is the Reynolds number based on half the plate separation and the 
maximum velocity of the undisturbed flow. The no-slip boundary conditions to 
be satisfied on the channel walls are 

$( * 1) = 0, a$( lk I)/@/ = 0. (2) 

Approximate solutions are sought by assuming a truncated form of the 

(3) 

expansion 
00 

$(x, y, t )  = C {A,(y, t )  cosmaX+B,(y, t )  sinrnax}. 
m=O 

The functions A,@, t )  and BJy, t )  are found as solutions of the system of coupled 
partial differential equations that appears when the assumed expansion for $ 
is substituted in (3) and like trigonometric terms equated. For complete details 
of the finite-difference method used to solve the initial-value problems see 
George (1970). 

Following George & Hellums, we take the initial disturbance to be of the form 

(4) 
A,(!/, 0) = ICaf(a,y), A,(Y, 0) = 0 for m $. 1, 

B,(y, 0) = 0 for all m, 

wheref(a, y) is the function 
coshay cosay 
(-GG-=) 

normalized so that its maximum value a t  y = 0 is 1, and where a is a root of 
the transcendental equation 

tanhaf tana  = 0 ( 5 )  
and k, is the amplitude. 

From linear theory, the odd modes are all strongly stable and so the decision 
was made to concentrate on even disturbances in these investigations. The form 
of (4) was retained so that results could be compared with those obtained earlier. 
However, as will be seen, the shape of the neutral oscillation is so far removed 
from that of the assumed initial disturbance that, if further work were to be 
done along these lines, it would be worthwhile starting with a profile which more 
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FIUURE 1. Disturbance stream funation at a = 0 and y = 0 with 
R = 4000, u = 1-05 and k~ = 0-105. 

closely resembled that of the computed neutral flow. The calculations were carried 
out with m = 0, l  and 2. George & Hellums studied the effect of higher harmonics 
(up to m = 4) and found their effect to be small for the amplitudes to be discussed 
herein. 

To locate a neutral amplitude, assuming that one exists, for a given Reynolds 
number and wavenumber a we must start with various trial values of kA and 
solve an initial-value problem, developing the solutions in time until we are 
reasonably certain that the amplitude is exhibiting either continuous growth or 
continuous decay. In  this fashion we may, by carefully selecting IC,, close in on 
the desired constant-amplitude solution. 

2. Results and discussion 
Figure 1 shows a typical plot of the development of the disturbance stream 

function on the centre-line a t  z = 0 as a function of dimensionless time t with 
R = 4000, a = 1.05 and kA = 0.105. The motion a t  first decays very rapidly, as 
always seems to  be the case, at least with this particular form of the initial dis- 
turbance, passes through a minimum and then grows with a decreasing growth 
rate until ultimately appearing to increase linearly, (As will be seen in figure 2 (a),  
this case was carried to a considerably longer development time than is shown 
in Sgure 1, the linear growth still being maintained.) 

To compare results for different values of kA we plot the relative maxima of 
the modulus of the amplitude as a discrete function oft. This is done in figure 2 (a)  
for the particular case of R = 4000 and a = 1.05 and it almost certainly establishes 
that there is a neutral-amplitude solution with kA falling between 0.0960 and 
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FIGURE 2. Stream function amplitude extrema on the centre-line at x = 0 as a function 
of dimensionless time for different initial amplitudes with a = 1-05. (a) R = 4000. 
(b )  R = 5200. 

0.0951. The corresponding neutral amplitude lies in the range 0-033-0*035. In  
figure 2 ( b ) ,  which shows results of calculations with R = 5200 and a = 1-05, the 
neutral amplitude generated with k, = 0.032 is well determined and is found 
to be 0.0102. 

Figures 3(a) and (b ) ,  corresponding to the ranges W X  and YZ indicated in 
figures 2(a)  and (71) respectively, show the down-channel component of the 
disturbance velocity as a function oft across the channel at  x = 0. These profiles 
are for one complete oscillation of the flow. Note, however, that in both cases 
the disturbance velocity on the centre-line is one-signed although very small. 
This effect may be due to the fact that we are close to, but not exactly at  the 
neutral solution and it is conjectured that if the search were further refined this 
effect would disappear. 
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FIGURE 3. One complete velocity profile oscillation close to the neutral solution a t  z = 0. 
(a)  R = 4000, a = 1.05 and kA = 0.095. (b)  R = 5200, a = 1.05 and kA = 0.032. 
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FIGURE 4. Comparison of the calculated neutral amplitudes for a = 1-05 
with the results of previous work. 

I n  George & Hellums (1972) the comparison of results for a = 1 with the 
analytical work of other authors was presented in terms of the initial disturbance 
amplitude k, rather than the computed neutral amplitude. Since the neutral 
amplitudes are considerably lower than k,, this form of presentation mis- 
represents the degree of agreement between the different approaches. Also, the 
previous work carried out with a = I may be less accurate since the decision 
relating to growth was made when the solution was less fully developed. As can 
be seen from figure 2, the estimate of the neutral amplitude can be in error if 
estimated on the basis of relatively short-time solutions. 

In  figure 4, the two computed cases are compared with other work on the basis 
of the neutral amplitudes. Shown on this figure are the small-amplitude curve 
constructed by Porteous (1971) and that computed by Reynolds & Potter (1967). 
Note that the latter differs from that reproduced in George & Hellums (1972), 
thus rectifying the omission of a factor 1/26 in that paper. The value of R for an 
infinitesimal disturbance and a! = 1.06 was interpolated from curves given by 
Porteous. In  making comparisons of this type it is important to recognize that 
the amplitudes in this work are twice those of the various workers who expand 
in the complex exponential form rather than the real trigonometric form. 

Notice that the two points from this work fall well below the analytical results. 
Of course, they may themselves be well above the envelope of neutral stability, 
Our results, therefore, suggest that the validity of some expansion methods is 
restricted to amplitudes considerably less than 0.01. 

I n  figure 4 we also show the earlier work of George & Hellums presented both 
in terms of the initial amplitude and in terms of the neutral amplitude. It can 
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be seen that the neutral amplitudes differ greatly from the corresponding initial 
amplitudes, especially in the higher amplitude cases, which are those of most 
interest, The neutral amplitude is the more satisfying parameter to use in these 
comparisons since earlier workers have usually used this amplitude in their 
various analytical approachee. Furthermore, the effect of the initial amplitude 
would presumably be dependent on the profile of the initial disturbance. The 
neutral amplitude should be independent of the initial conditions to the degree 
that we approximate the actual asymptotic behaviour. 

Meksyn & Stuart (1951) and Pekeris & Shkoller (1969a, b) have also applied 
expansion methods in this problem. Comparisons of these methods have been 
given by George & Hellums (1972). The second Pekeris & Shkoller work (19693) 
presents results which agree with Reynolds & Potter at  least within the limita- 
tions of the scale of figure 4. 

Ideally one would like to construct a series of neutral curves of the type shown 
in figure 4 for various wavenumbers. Thus, the envelope determined by the 
lowest curve at  each amplitude would represent the critical stability curve. As 
a step in that direction, the new solutions were developed for CI = 1.05 rather 
than cx = 1.00 since exploratory calculations indicated that this would yield 
a lower transition Reynolds number. As can be seen in figure 4, these points of 
the current work are lower than the a = 1.00 curve. However, this difference 
should be viewed with some caution, since more care in determining the exact 
amplitude of neutral stability was taken in the current work. The computer time 
required to complete the two-parameter search in the determination of the 
complete critical stability curve would be relatively large. Hence, we have no 
plans to carry out such extensive calculations. We have presented results for 
relatively few cases. However, we feel that these results are reliable and they 
contribute to the understanding of the transition. We also hope that these results 
will be useful to future workers in assessing the validity of various approximation 
methods. 

This work was supported in part by the National Institutes of Health under 
grant HL 09251. 
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